Chemically exfoliating large sheets of phosphorene via choline chloride urea viscosity-tuning.
نویسندگان
چکیده
Exfoliation of two-dimensional phosphorene from bulk black phosphorous through chemical means is demonstrated where the solvent system of choice (choline chloride urea diluted with ethanol) has the ability to successfully exfoliate large-area multi-layer phosphorene sheets and further protect the flakes from ambient degradation. The intercalant solvent molecules, aided by low-powered sonication, diffuse between the layers of the bulk black phosphorus, allowing for the exfoliation of the multi-layer phosphorene through breaking of the interlayer van der Waals bonds. Through viscosity tuning, the optimal parameters (1:1 ratio between the intercalant and the diluting solvent) at which the exfoliation takes place is determined. Our exfoliation technique is shown to produce multi-layer phosphorene flakes with surface areas greater than 3 μm2 (a factor of three larger than what has previously been reported for a similar exfoliation method) while limiting exposure to the ambient environment, thereby protecting the flakes from degradation. Characterization techniques such as optical microscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, and (scanning) transmission electron microscopy are used to investigate the quality, quantity, and thickness of the exfoliated flakes.
منابع مشابه
Large Area Fabrication of Semiconducting Phosphorene by Langmuir-Blodgett Assembly
Phosphorene is a recently new member of the family of two dimensional (2D) inorganic materials. Besides its synthesis it is of utmost importance to deposit this material as thin film in a way that represents a general applicability for 2D materials. Although a considerable number of solvent based methodologies have been developed for exfoliating black phosphorus, so far there are no reports on ...
متن کاملEffect of water presence on choline chloride-2urea ionic liquid and coating platings from the hydrated ionic liquid
In the present study, hygroscopicity of the choline chloride-urea (ChCl-2Urea) ionic liquid (IL) was confirmed through Karl-Fisher titration examination, indicating that the water content in the hydrated ChCl-2Urea IL was exposure-time dependent and could be tailored by simple heating treatment. The impact of the absorbed water on the properties of ChCl-2Urea IL, including viscosity, electrical...
متن کاملHigh Catalytic Ability of Fe3O4/EDTA Magnetic Nanocatalyst in Comparison with Various Deep Eutectic Solvents for One-Pot Synthesis of 4H-Pyrans
In this work, various 3-cyano-4-aryl-4H-pyran derivatives were prepared efficiently through a one-pot,multicomponent synthesis between aromatic aldehyde, malononitrile and acetophenone derivativesor ethyl acetoacetate using Fe3O4/EDTA magnetic nanocatalyst and ethanol as solvent. The reactionswere completed at room temperature in 10 min using 5 mg of catalyst and 2 mL of solvent to prepare1 mmo...
متن کاملDeep Eutectic Solvent Based on Choline Chloride/Urea as an Efficient Catalytic System for the One-Pot Synthesis of Highly Functionalized 1,4-Dihydropyridines and Polysubstituted 4H-Chromenes
One-pot four-component synthesis of polyfunctionalized 1,4-dihydropyridine derivatives was developed by a condensation of aldehydes, malononitrile, diethylacetylenedicarboxylate and aniline in the presence of choline chloride/urea as a deep eutectic solvent (DES)at room temperature.Moreover, an efficient method was reported for the synthesis of highly substituted 4H-chromenes through one-...
متن کاملThermal conductivity of a two-dimensional phosphorene sheet: a comparative study with graphene.
A recently discovered two-dimensional (2D) layered material phosphorene has attracted considerable interest as a promising p-type semiconducting material. In this work, thermal conductivity (κ) of monolayer phosphorene is calculated using large-scale classical non-equilibrium molecular dynamics (NEMD) simulations. The predicted thermal conductivities for infinite length armchair and zigzag phos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 28 15 شماره
صفحات -
تاریخ انتشار 2017